LogoLogo
Home
Core Platform
Core Platform
  • Introduction
    • Overview
    • Use Cases
    • Architecture
    • Built with ML & AI
    • Quick Start
  • Examples
    • Training Examples
      • API Flow Examples
      • Microservice Examples
      • UI Example
      • Exercise: Hello World API
      • Exercise: Test State
      • Exercise: Test UI
    • Exercise: To-do List
      • To-do List Runner
      • To-do List Gateway
      • To-do List UI
      • To-do List Query
  • Troubleshooting
    • Rierino Packages
    • Release Notes
    • Useful Checks
    • Error Codes
  • Devops
    • Overview
    • API Flows
      • Using the Saga Screen
      • Defining a Saga
      • Configuring Saga Steps
        • Event Step
        • Transform Step
          • Transform Classes
        • Condition Step
          • Condition Classes
        • Step Link
      • Injecting Variables
    • Microservices
      • Runners
        • Using the Runner Screen
        • Defining a Runner
        • Managing Runner Settings
        • Adding Runner Elements
        • Deploying Runners
          • Spring Runners
          • Samza Runners
          • Camel Runners
      • Elements
        • Systems
        • State Managers
          • Typical Use Cases
          • State Data Structure
          • Local States
            • In-Memory Map
            • Caffeine Cache
            • Samza Based
            • Lucene Based
            • Single File
            • Multiple Files
            • Selected IDs Map
            • Indexed Map
          • Shared States
            • MongoDB Collection
            • Jooq (SQL) Table
            • Redis Map
            • Couchbase Collection
            • Elasticsearch Index
            • Elasticsearch Joined
            • Etcd Namespace
          • Specialized States
            • CRUD Service
            • Odata Service
          • State Coordinators
            • Lazy Cache Coordinator
            • Event Store Coordinator
            • Write thru Coordinator
          • Loading Strategies
          • ID Generators
        • Listeners
        • Query Managers
          • MongoDB
          • Elasticsearch
          • Lucene
          • SQL Based
          • Odata Service
        • Handlers
          • Core Handlers
            • Write Data
            • Read Data
            • Query Data
            • Apply Rules
            • Call Rest API
            • Generate Text/Html
            • Parse Html
            • Generate Secrets
            • Orchestrate User Task
            • Perform File Operation
            • Run Shell Command
            • Send/Receive Emails
          • Custom Code Handlers
            • Run Scripts
            • Run Java Code
            • Run Java Package
          • Flow Handlers
            • Orchestrate Saga
            • Loop Each Entry
            • Run Multiple Steps
            • Buffer Payloads
            • Merge Parallel Steps
            • Log Event
            • Send Event
            • Validate Event
            • Transform Event
            • Perform DB Transaction
            • Trigger Runner Command
            • Do Nothing
            • Modify Role Data
            • Enrich Role Data
            • Convert Pulse to Journal
          • Gateway Handlers
            • Authenticate
              • No Authentication
              • State Based
              • Keycloak Based
            • Sessionize
          • Specialized Handlers
            • Apply Advanced Rules
            • Calculate Real-time Metrics
            • Score ML Models
            • Score LangChain Models
            • Service MCP Requests
            • Service A2A Requests
            • Consume Web of Things
            • Perform Text Embedding
            • Run Python Procedure
            • Generate Excel
            • Generate PDF
            • Call SOAP API
            • Integrate with Camel
        • Actions
        • Streams
          • Kafka Topic
          • CDC Feed
          • Camel Component
        • Roles
        • Generic Settings
        • Global Settings
      • Deployments
        • Defining a Deployment
        • Alternative Loaders
    • Gateway & Security
      • Gateway Servers
        • Gateway Systems
        • Gateway Channels
        • Gateway Services
        • Gateway Tokens
      • APIs
        • OpenAPI Specification
        • Response Formats
    • Administration
      • Managing Deployments
      • Sending Commands
      • Streaming Messages
      • Migrating Assets
    • Batch Tasks
      • Python Processes
      • Python Iterators
      • Python Processors
    • Pro-Code
      • Custom Handlers
      • Custom State Managers
      • Custom Query Managers
      • Custom CDC Managers
  • Design
    • Overview
    • User Interface
      • Apps
      • UIs
        • Listers
        • Widgets
          • Value Widgets
          • Array Widgets
          • Object Widgets
          • Indirect Widgets
          • Atom Widgets
        • Menus
          • Lister Menu Actions
          • Selection Menu Actions
          • Editor Menu Actions
          • Widget Menu Actions
          • Custom Menu Actions
          • RAI Menu Actions
        • Extended Scope
          • Conditional Display
          • Data Context
          • Extra Data
          • Default Item
          • Extra Events
      • Options
      • Translations
      • Icons
      • Styles
      • Components
    • API Mapping
    • Data Schema
      • Common Data
  • Configuration
    • Overview
    • Queries
      • Query Types
      • Query Platforms
        • MongoDB Queries
        • Odata Queries
        • SQL Queries
        • Elasticsearch Queries
        • Lucene Queries
        • Siddhi Queries
    • Business Rules
      • Drools Rules
    • Dynamic Handlers
  • Data Science
    • Overview
    • ML Models
      • Scheduler Platforms
        • Airflow Scheduler
    • GenAI Models
    • MCP Servers
    • Complex Event Processing
      • Siddhi Data Flows
    • Data Visualizations
    • Customizations
  • EXTENSIONS
    • JMESPath
    • Handlebars
Powered by GitBook

© Rierino Software Inc. 2025. All rights reserved.

On this page
  • rierino_util.NoopProcess
  • rierino_util.PrintProcess
  • rierino_runner.IterateProcess
  • rierino_media.MediaProcess
  • rierino_media.MediaStatsProcess
  • rierino_tensor.TFModelProcess
  • rierino_spark.SparkModelProcess
  1. Devops
  2. Batch Tasks

Python Processes

Python processes are typically triggered using rierino_util.Runner

PreviousBatch TasksNextPython Iterators

Last updated 4 months ago

Processes available out of box for execution are listed on this page. It is also possible to create new processes using rierino_util.Process as the base class.

rierino_util.NoopProcess

This is a test process that doesn't perform any specific action.

rierino_util.PrintProcess

This is a test process that simply prints the request details on console.

rierino_runner.IterateProcess

This is the most commonly used process, which allows looping through an and performing tasks using a (such as uploading records in an input file to a REST endpoint), using the following parameters passed in args.parameters and payload submitted:

Args Parameter
Definition
Example
Default

processCycle

How often the processor actions should be triggered (each, buffer or all)

all

each

processBuffer

Buffer size to use if processCycle is set as buffer

10

100

bufferMode

How the buffer should be consumed (parallel, sequence or function)

parallel

function (calls Processor.processAll)

bufferWorkers

Size of worker pool to use if buffer is consumed in parallel

5

3

bufferTimeout

Timeout to wait for workers when buffer is consumed in parallel

60

3

maxIterations

Maximum iterations allowed (to limit iterator loop)

100

-

sourceLoop

Allows creating multiple iterations from a single entry from source, using json path

data.list

-

whilePattern

Jmespath pattern to decide whether iterations should continue or not (uses {summary, raw, entry, iteration} input)

{continue: raw.hasNext}

-

processPattern

Jmespath pattern to feed data into Processor (uses {summary, entry, iteration} input)

{list: entry.records}

-

finishPattern

Jmespath pattern to feed data into finisher (uses {summary, entry, iteration} input)

{pages: iteration}

-

mapPattern

Jmespath pattern to calculate summary after each Process (uses {summary, entry, iteration} input)

{list: []}

-

mapGroup

Field to group process results (or mapPattern results if available) by for summary

["type"]

-

mapAgg

Data frame aggregation specification to calculate for summary

{"id": "count"}

-

starter.module

Processor module to use as starter to enrich parameters

-

-

starter.[module_params]

Parameters to pass on to starter processor

-

-

iterator.module

Iterator module to use for generating loop data

rierino_runner.iterator.DataIterator

-

iterator.[module_params]

Parameters to pass on to iterator

element=list

-

processor.module

Processor module to use for each iteration

rierino_runner.processor.RestProcessor

-

processor.[module_params]

Parameters to pass on to processor

url=example.com

method=POST

-

finisher.module

Processor module to use as finisher at the end of iterations

-

-

finisher.[module_params]

Parameters to pass on to finisher processor

-

-

rierino_media.MediaProcess

Media proces allows manipulation of image, html and video files using the following arguments passed as args:

Argument
Definition
Example
Default

source

Connection & path for the source file

{connection: "fs_main", path: "/images/1.png"}

-

target

Connection & path for the target file to be created

{connection: "fs_main", path: "/images/1_result.png"}

-

parameters.type

File type (image, video, html)

image

-

parameters.[media_params]

File type and action specific parameters

{steps: [], optimize: true}

-

rierino_media.MediaStatsProcess

Media stats proces allows analysis of an image file, including details such as shape, dpi, top colors and background using the following arguments passed as args:

Argument
Definition
Example
Default

source

Connection & path for the source file

{connection: "fs_main", path: "/images/1.png"}

-

rierino_tensor.TFModelProcess

TF model proces allows training of a Tensorflow model using the following arguments passed as args:

Argument
Definition
Example
Default

model

-

-

rierino_spark.SparkModelProcess

Spark model proces allows training Spark based models using the following arguments passed as args:

Argument
Definition
Example
Default

model

-

-

sparkConfig

Configuration to pass on to Spark

-

-

Model object, using structure in data science app

Model object, using structure in data science app

Iterator
Processor
ML model
ML model